lymer Alloys/Blends

One Stop Satellite Laboratories.

The applications of polymers have been expanding, and performance requirements are becoming increasingly sophisticated. As a result, it is often difficult for a single polymer to satisfy all the necessary properties. In particular, there is growing demand for materials that can reconcile conflicting characteristics—such as impact resistance and rigidity, or heat resistance and processability.

To address this, polymer alloy technology was developed, which involves blending different existing polymers in order to maximize their strengths while compensating for their weaknesses. Unlike low-molecular-weight compounds, polymers generally do not mix uniformly at the molecular level, even when their structures are similar, and thus require special techniques to achieve compatibility.

Polymer Alloys: Positioning							
Homopolymer			Copolymer				
\downarrow							
Polymer Blend							
Misci	Miscibility		Immiscibility				
Homogeneous	Heterogeneous		(Compatil	,			
	√ Compatibilization						
	Alloy						
Reference: Katsuhiko Hironaka; The Society of Rubber Industry, Japan Kanto branch							

	Polymer Alloys Classification, and Design Considerations									
Classification		State	Conditions for Alloying							
	Miscibility	Homogeneous	Fully Miscible	Miscibilization (Thermodynamic) -Polymer selection -Use of random copolymers						
		Heterogeneous	Partially Miscible	-Processing conditions (Heterogeneous)						
	Immiscibility D		Dispersion	Compatibilization (Physical and Chemical) -Dispersion control (shear, compatibilizer) -Interface control (compatibilizer, polymer chain modification, reactive extrusion)						

Polymer Alloy Contract Development

Immiscible Polymer Alloy – MC15-HT Mini Kneader Example

Test Overview Using This Equipment

- -Evaluation of polymer thermal stability, degradation, decomposition, and reactivity
- -Assessment of additive/filler dispersion (e.g., nanoparticles)
- -Polymer blends
- -Reactive blends
- -Small-scale kneading of lab-prepared samples
- -Sample preparation for various tests

Kneading Section / Conical Screw Benchtop Kneader

Preparation of Thermoplastic Resins / Rubber-Based TPVs

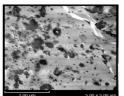
Dynamic vulcanization allows versatile material design by combining various resins and rubbers, and is actively researched, especially for cured rubber replacement. Examples of resin-rubber combinations studied to date are shown below.

TPV face challenges, as their shape recovery, flexibility, and heat resistance are not always sufficient compared with cured rubber. Therefore, it is important to explore new applications beyond simple cured rubber replacement.

Thermoplastic Resin-Rubber Combinations

Resin, Rubber	EPDM	IIR	Acrylic	H-NBR	NR	ENR	SR
PA		•	•	•		•	•
PBT		•	•	•			
PLA						•	
PP	•		•				
EVOH		•					

Compounding with twin-screw extruder


Resin/Rubber = 30/70 Composition

Crosslinking/curing agent: 0.5–10 phr (rubber basis)

Equipment Lab-scale twin-screw extruder MC-15 (Xplore Instruments)

Cylinder temp.: 180–250 °C Screw speed: 250 rpm Time: 10–15 min Kneading Conditions

Phase separation structure by SPM-9700HT (Shimadzu) Measurement: Phase mode Evaluation

Phase separation (SPM, phase mode)

TPV Samples

Study on Compatibilizers for Polyester/Rubber Systems

Implementation Example Formulation BLANK m-PO E-GMA PS-Ox m-SEBS PLA/NR △-× △-x $O-\triangle$ Δ PLA/EPDM 0 × PET/EPDM \times - \wedge Δ PET/IIR × 0-4

To develop TPV-based elastomers, we investigated alloying immiscible thermoplastic resins and rubbers. Various compatibilizers were evaluated to identify effective agents and formulations. Tests were conducted using PLA, a bio-based polymer, and PET, considering the effective use of recycled materials.

Composition Resin/Rubber = 50/50, Compatibilizer = 5 phr

Laboplast Mill 3S150, 30 cc Mixer (Toyo Seiki Seisakusho, Ltd.) Equipment

Mixing Conditions Cylinder temperature: 180, 260 °C Screw speed: 150 rpm Mixing time: 2 min

Appearance of sheets after processing Rating; \bigcirc Completely miscible, \bigcirc Miscible, \triangle Partially miscible, \times Immiscible Evaluation